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A NEW METHOD OF APPROACHING
THE DESIGN OF SOUNDING ROCKETS

E. Gismondi, Doctor of Engineering

ABSTRACT. The author of this report intends to present rocket
designers a very simple calculating method of precisely deter-
mining the principal characteristics of a rocket that meets

the requirements set forth by the design problem. The method
may also be used to compare the influence of some parameters on
the characteristics and the performance of rockets. The method
proposed has been applied to analytical solutions which require
only a certain amount of simplification and which can be elimi-
nated with iteration.

INTRODUCTION

In general, in order to set up a design project for a single-stage rocket /3%
in vertical ascent, tests are made based on similar rockets and on personal
experience, with the aid of a digital computer.

This report is intended to give designers a very simple calculating method
of precisely determining the principal characteristics of a rocket that meets
the requirements set forth by the design problem. This method can also be
used to compare the influence of some parameters on the characteristics and
performance of rockets.

With successive approximations, it is possible to approach results, which
are satisfactory for setting up a design project.

The introduction of nondimensional quantities resulted in a nondimensional
solution, with respect to selecting from the family of rockets that one which
might satisfy the requirements.

The new method has been applied to analytic solutions, which only require
a certain amount of simplification, and which can be eliminated with the
iteration of the method application.

With the attached nondimensional graphs, however, a digital computer was
used for greater precision. At the same time, the principle of the solution
continued to be valid.

1. Propelled Ascent /4

To calculate the velocity and altitude attainable by a vertically launched,
single-stage sounding missile, it is necessary to integrate the differential

* Numbers in the margin indicate pagination in the foreign text.



equation valid for the propelled portion of the rocket's flight:

d G
R S @

To simplify the calculation process without detracting from the principle
of the problem, the rocket was considered at angle of trim O in regard to
the trajectory, then aerodynamic lift 0 , in an unperturbed atmosphere.

The terms of Equation (1) are as follows:

2
—C 4t - gdt - Cr 120 5y Ve
W, - 6t W, - ot

dv = Vg dt (2)

It is not possible to integrate Equation (2) analytically since the drag
coefficient Cr is a function of the Mach number of flight, the density of the
air depends on the altitude, the effective velocity of the exhaust gas depends
on the ambient pressure (and thus on the altitude), and the acceleration of
gravity g depends on the altitude.

For the approximate analytic integration of Equation (2), some simplified
hypotheses are presented:

Ve = v = constant (3): the error which can be made in calculating the
thrust is 107 at the most; however, in an iteration of the calculation method,
it is possible to adopt a more realistic average value.

g = 8§ = constant (4): the error made is mnegligible.

p =7 = constant (5): an average value of the density in the propelled
portion of the rocket's flight is assumed, and this value is modified during the
iteration of the calculation.

CR = Eﬁ = f(VR) (6): the velocity of sound is assumed to be constant with

the altitude so that the drag coefficient depends only on the velocity. The /5

error which is committed is not great since the velocity of sound depends on
the square root of absolute temperature a = RT.

v = vp (7): velocity v which introduces the second part of Equation (2)

for the calculation of the drag, is calculated as if the drag were O , according
to the equation:
dv = Vo —2—— dt - gdt (8)
W, - Gt
0]
from which, integrating between initial instant t = 0 and t, the following
is obtained:

R = — [v_ log (1 - %‘“;—) + gt] 9)




Velocity v, is then greater than the effective velocity of flight at the

R
same instant t.

The drag calculated with v is greater than the effective resistance.

R

In Equation (2) an error is introduced which causes the velocity and the
altitude attainable by the rocket to be less than real values.

The following nondimensional variables are given:

£ = Gt 3 Gtc (10)
WO C=w—
0
Eé \
m e
T = ————— (11)
G/g v
_ Gl/g v,
o=y (12)
0

For a discussion of the significance of the dimensionless quantities, see
Paragraph 3.

Equation (9) is transformed as follows:

= _ _ £
VR = "V, [log (1-¢) + 0] (13)
Since the drag coefficient E£ = f(vR) depends only on Vg s the following
is obtained:
Cp = £(e,0) (14)

By substituting positions (3), (4), (5), (7), (10), (11), (12), and (14) in
G tc

o

Equation (2) integration is obtained between = 0 and = ¢ =

to obtain v'c.

This velocity will be less than the re2l value since it achieved. in the
caiculation ot the drags, a velocity vR greater tnan the real vaiue. To intro-
duce this error, burnout velocity is assumed to be the average value:




v =& R (15)

between the velocity calculated with a resistance higher than the real value,
and the velocity calculated without resistance:

2
- £ ¢ ¢ (e,0) [log (1-¢e) + E]
Ve = e l:—log (1-e) - =< - —Tf R ' g ds] (16)

1] 4 1-c¢
0

Integrating again, the altitude attainable by the rocket at burnout is
obtained:

2 €€ — €,
v 1-¢ € € 2 C_ [log (1-¢) + —1]
7 = _e__[ $log(l-e )+—= S - T—f f R O de de](l7)
c J o} ¢’ 09452 o 0”0 1-c¢

2. Inertial Ascent

The vertical ascent of the rocket, after the propellant is consumed, contin- /7
ues through inertia, according to the differential equation:

2
Cq 1/2 P S,V 8

dv__ __ _Re_ _, _ (18)
ac - T8 T W, g W
w,o(1- =£)
0 W
0
It is not possible to integrate this equation analytically, due to the
same reasons stated for Equation (2).
The following simplified hypotheses are given:
g = §'= constant (4): the error committed is still negligible.
p = op = constant (19). A constant value of the density proportional to

g
value 7, adopted in the propelled portion of the rocket's flight, is assumed.

It is possible to reduce the error with successive iterations of the calcula-~
tion.

CR = Eﬁc = constant (20): a constant value of the drag coefficient is
assumed, since a fair proportion of the inertial flight is achieved at super-
sonic velocity.

The dimensionless variable is introduced:

2 } 2(l—ec)

CRC ato

A (21)



By introducing dimensionless variables (10), (11), (12), and (21), and
positions (4), (19), and (20), Equation (1l38) becomes:

1

v = -g [1+55 (7] a (22)
A e

Equation (22) is integrated with the following boundary conditions:

t = tc
ve=v, initial (23)
zZ =z
c
v=0 f final (24)
2 1 Ve
v=vV Atan| (t - t) £ 4 arc tan == (25) /8
e c AT Ay L=
e e
v_A 1 vc
t. -t =-—=— arc tan (5~ —) (26)
£ c - A v
g e
-2
Ve 2 1 Ve
Zf - ZC = - —_g_—- A" log cos arc tan (X:‘\;—) 27)

1)

3. Discussion and Significance of the Nondimensional Quantities

All of the nondimensional quantities selected have physical significance:

6t w (10) represents the percentage of pro-
€ = W - v pellant with respect to the total
° o

initial weight of the missile.

-2 =
T = S5p Ve P (11) represents the main thrust section
6/g v, ratio.
£ 3
G = —E—&. .S (12) repres?nts the acceleration at
Y Y launching

For a family of rockets, the ratio between the weight of the structure and
the propellant, and the weight of the propellant remains constant.

= (28)



It is possible to give the following definition of: /9

g

=1 - €. a+y), (29)

& e

the ratio between the payload and the weight of the rocket at launch.

It is convenient to seek the minimum value of € in order to have the maxi-
mum payload at equal weight at the time of launch.

- 2
Sm pf Ve _ Eﬁ (21)
+ w wc

>
4}
[

represents the ratio between the hypothetical aerodynamic resistance of the
rocket in inertial flight, calculated with the velocity v = Voo and the

. 2 ,
weight of the rocket at burnout. Thus parameter 1/A” represents the hypothetical
deceleration of the rocket in inertial flight and hence an estimate of the aero-
dynamic braking at thrust decay.

4. Metbod for Setting Up the Design Project.

For the design of a single-stage sounding rocket, i.e., to determine the
principal characteristics for the required performance, it is necessary to
establish in advance:

- the aerodynamic shape and thus the behavior of the coefficient of

resistance (6) and (20);
- the type of propellant and thus the v_ (3);

- the propellant system and the related load bearing structure necessary;
their weight can be considered proportional to the weight of the propellant

ws
Y = ;,-; (28) ;
— the distribution of the density of the air and thus S-(S) and o B.(l9);
- the average value. of the acceleration of gravity g (4).
On the other hand, the following are known: /10
W, =w_+w_ +w total initial weight (30
0 u s P
wp =G tC initial propellant weight (31)
s =.gv constant thrust (32)
g e



The variables in question are G, tc’ S, Sm, WO’ Wu, Wp, WS, while there

are only 7 relations which define the problem. By using Equations (28), (30),
(31), and (32), it would be possible to reduce the problem to four variables
defined by three relations. But by way of comparison, we might state that it

is not convenient to proceed this way. In fact, the variable that can be im—
posed on the problem and which can then be used to define analytically all the
other quantities, can also be one of the four variables defined by Equations (28),
(30), (31), and (32). In this way, the designer has greater liberty in detiniuy
the rocket, (or rather the family of rockets) which can satisfy the requirements
of the design project itself.

By adopting appropriate criteria, suggested from time to time by the prob-
lem posed, it is possible by means of Equation (27), which connects the di-
mensionless quantities €, T 0 among themselves, to calculate the value of the

quantities themselves (as seen in the graph of Figure 5).

The above four unknown variables, interconnected by definitions (10), (11),
and (12) of dimensionless quantities €. T 0, characterize a family of similar

rockets. Since one of the four variables is fixed by the data of the problem,
the remaining unknown variables prove to be dimensional. In this way, the
assumed dimensional quantity permits the selection of a well defined rocket to be
made from similar rockets, thus satisfying the requirements of the problem.

The exactness of the method depends on the values assigned to the constants
and the error introduced in calculating the aerodynamic resistance.

Constants-g (4) and —; (3) can be substituted, after an initial calculation,

by values closer to reality. The average value of density p (5) in the
propelled portion of the rocket's flight can be introduced in expression 1 (12),
after which altitude ZC is calculated. 1Inaccuracy can thus be reduced to a
minimum.

The value of ratio o , between the density of the air in the propelled
flight portion and in the inertial flight portion, can be substituted in a
second estimate, as seen in Paragraph 5, based on the results of the first /11
calculation.

With regard to the error introduced by v, and hence the resistance, it

R
should be noted that it is possible to eliminate this error completely by using
a digital computer for integrating the nondimensional Equations (2) and (18).

Graphs such as those mentioned in Paragraph 5 permit a general solution,

depending only on the coefficient of resistance CR and on ratio o , since all

other constants are introduced by nondimensional quantities €. T O (10), (11),
and (12).



The graphs were obtained by a digital computer, with the coefficient of

resistance CR and CRC = 0.32 and with o = 0.07.

5. Numerical Application of the Method

Given the attainable altitude Zf and the weight of the payload Wu’ the

characteristics of the- single-stage rocket of minimum initial weight WO must
be defined.

In order to specify the solution it is first necessary to define the field
of possible existence of two nondimensional quantities T and o. This is
indispensable because of the possibility of limiting the numerous solutions
permitted by the ballistic treatment, so as to avoid technically unfeasible
solutions.

Such limitations, well known to rocket technicians and designers, are
dictated by practice and can be modified later on the basis of technological
evolution.

From the expressions:

v
¢ —
== F' (Ec, T, O, CR) (16)
e
Zc _
_.2/ = F" (ec, Ty O, CR) (17)
v -
e/ g
Zf _
._2/ "= F (EC’ Ts T, CR’ CRC’ o) (27)
Ve g_

it is possible to graph the maximum altitude attainable by the rocket Zf, as a [12
function of the nondimensional quantities €. T O (as seen in Figures 1, 2, 3,
and 4).

In the Figure 5 graph, the situation is represented for the projected
altitude Zf, which is a factor im the problem, and for the possible values of

€ T 0.
Cc

We select the pair of values T and ¢ which minimize €. in that by

=

Wﬁ =1l (Q+vy) (35)



the minimum value of WO is obtained for the minimum value of ec.

Knowing €. T o wo Wu, it is possible to calculate from (28), (29), (31),

and (32), all of the other quantities which are characteristic of the rocket
in the first approximation.

In a second approximation, it is possible to improve the values calculated,
while bearing in mind a more realistic distribution of the density of the air.

Z is calculated on the basis of (21), or on the basis of the graphs reported
in Figures 1, 2, 3, and 4 and the average value. is determined for density p at
the end of altitude ZC (rocket in propelled flight) and at the end of altitude

Zp (rocket in inertial flight). We may then determine the value:

—_—
P

[»)

v
We calculate c/vé on the basis of Equation (20) or on the basis of the

graphs in Figures 6, 7, 8, and 9.

From Equation (27), or the graphs in Figure 10, we learn for:
@Z.-2)/v 2 g and v_[v_ is the value of A
f c e cl e )

In expression (21) of the nondimensional quantities: 13

2(1-¢ )
A =J :———C— we substitute the new, calculated value
C,.0 TC

RC
of a'. While T remains the same, we must again seek values for €. and o that
satisfy Equation (21) and, at the same time, Equation (27), which can be
represented by the graph of Figure 5 b.
To find such pairs of values (knowing A, Ekc,a', 7), the line representing

Equation (21) is seen in Figure 5.

2 2 (33)




The point of intersection with the graph parametered at T, represents the
values of €. and o.

Thus we obtain a new rocket, with characteristics and design approximating
a real rocket. )

Numerical Example

A rocket with the following characteristics is considered:

Zf = 160 000 m
= k
Wu 45 kg
Ve = 1930 m/sec
Yy = 0.40
It is assumed that g = g, CRC = 0.32, o = 0.07.
From the graphs in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, we obtain
Z
for f2 = 0.42 the pair of values ¢ = 12 and 1t = 2, which minimizes €. = 0.685.
v, / z
W =2/ _ )
Furthermore, we obtain vjé.= 0.98, e/ e/8 = 0.10, p = 5.9 * 10 7, pe =
-6 ' . -4 ¢
8.0 - 10 7, a' = 1.35 * 10 ', and A = 26.

fquation (21) thus expresses the straight line:
c = 34.4 — €. * 34.4
which is traced on the graph of Figure 5b.
The point of intersection: ¢' = 10.2, ' = 2, ec' = 0.690, Zf' = 162 000 m,
ZC' = 41 500 m, v, = 1870 m/sec, W0 = 1300 kg, Wp = 896 kg, Ws = 359 kg,
t, = 13.1 sec, G = 68.5 kg/sec, S = 13 300 kg, Sm 0.125 m2.

il

6. Numerical Application of the Method

Given the initial weight of rocket WO’ determine the types of rockets

having the maximum possible altitude Zf and the maximum payload Wu.

C

Assuming that the following values are known: ;é, Y, CRC’ R ¢

10



we sketch, with the help of Equation (27), graphs €, = constant, which gives
the altitude:

as a function of ¢ and parametered at T . See Figures 11, 12, 13, and 14.

The payload wu is determined, and from Equation (29) we obtain €. The

maximum altitude attainable, and the values of two nondimensional parameters
T and o,are obtained from the graph corresponding to value €.

This procedure is used for the selected values of the payload and then

reported in Table Zf = Zf(Wu).

Numerical Example

The following values are given:

o = 4000 kg
v, = 2500 m/sec
p = 0.29 15
Cpe = 0-32
o = 0.07
Ze
= 27=| %g [ml (W [kel e Tl o WP[kg] W [kg]
elgl o I R !
0,472 295 000 390 0.700 2 6 2800 810

0,392 244 000 648 0.650 2 7 2600 752

0,354 222 000 775 0,625 2 7 2500 725

0.318 198 000 905§ 0, 600 2 8 2400 695

Numerical Application of the Method

Given the completely defined single-stage rocket, determine the payload
W which increases the rocket's attainable altitude Zf.
u

From definitions (10) and (12) of the nondimensional quantities €. and o:

11



(3]
<|
(]
<l

= — = e = .
o = = ec 01 EC (34)
g ¥g g P
G 5;
o) == = constant (35)
1Y
& P

Equation (34) is substituted in Equation (27), which then becomes a
function of T, €. and ¢ = constant.

By deriving and equating Equation (27) to zero, which is thus modified, it
is possible to determine the value of e which enables the rocket to attain
the highest altitude.

Otherwise, it is possible to get the value of €. from the graphs of
Figures 15, 16, 17, and 18 where, according to Equation (27), as modified,

Zf is traced as a function of ol and T.

Numerical Example

Wp = 34 kg
W = 13.6 kg
s 2
S =0.0177 m
m
G = 8.1 kg/sec
t = 4.2 sec
c
v = 1860 m/sec
¢ -2
p =10 - 10
_ PSSV g
T = ne = 4
G
G-;e
gy = = = 45
& P

0.670, from which:

From Figure 16, we obtain €.

=
1]

51.7 kg
4.1 kg

=
It

12

116



From Figure 2, we obtain Z_ = 69 000 m; Zc = 3300 m.

£
APPENDIX I

Optimization of the altitude attainable by a rocket defined by factor €.

which, as we know, is the ratio between the weight of the propellant and the
initial weight of the rocket, can be deduced easily by deriving Equation (27)
with regard to €. and equating it to zero.

Ve
2, — 2 -2 _ 2 -2 _ d(}’")
§(Zf/'€e l'e) ] f‘,(zc/ve /8) Ve J(2ge-z ) d(a) v Hzg-2 ) “\v, @)
dec dsc k3 (AZ) dec € ¢(vc> dsc

The expressions of the individual terms which make up Equation (a) are
explained as follows:

-2 c
v iy - 2
d0 /e 18 o8 Ome 1 & [ Gplios (-2) + ] )
de o] g 2 4o 1-c¢ de
c o
0
& Ve X
¢(Zf—zc) 1 Ve AV,
——=—— = - log cos arc tan — = - ——————— )
7% AVe 1 Ve 2
$eA, L+ =)
A
v
e
2
_d (A7) - 2 @)
d ec CﬁC aTo
v
Cc
¢(Zf_zc) - _ Vé (e)
Ve v 2
¢ ) 1 _c
- 1 +(A = )
e v
e
d(v—c) .’
T c [log(l—sc) + EE']
e .1 __1_z® R N (£)
d € l—ec o 4 l-Ec

13



14

By substituting (a) for (b), (¢), (d), (e), and (f), an equation is
found in which 1t and ¢ are assumed to be parameters, and e, an unknown factor.

It is not possible to obtain an analytical expression of €. for the

diverse pair 1t and o0, since Equation (a) is transcendental. However, it would
be possible to graphically show the field of existence of T and ¢, for which
(a) offers a solution, and which are thus values for which a maximum exists for
the function:

2./v, 2/ = £(e )

nowever this would diminish the exactness of the solution to the problem and
would be a useless complication to the method explained above.
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